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For  a large  class of  i n t e rmo lecu la r  potent ia ls ,  the values  of  the second vir ial  

coefficient at  a discrete  set of  t e m p e r a t u r e  points  in an a rb i t r a r i ly  smal l  

n e i g h b o r h o o d  of  the or ig in  de te rmine  the po ten t i a l  uniquely .  
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1. I N T R O D U C T I O N  

The inverse problem in statistical mechanics consists in finding an inter- 
molecular interaction consistent with the known macroscopic properties of a 
system. A problem of recent interest has been to investigate to what extent the 
second virial coefficient B(/3) determines the pair potential ~(r). ~1'2~ In Ref. 1 
it was shown that if ~b(r) is reasonable and of a definite sign, then B(/3) deter- 
mines ~(r) uniquely. In Ref. 2 the condition of definiteness of~b(r) was dropped 
but it was required to be analytic in a neighborhood of the positive real line 
R + , 

B(/3) is given by 

fo B(/3) = -21r (e -e~(r) - 1)r 2 dr (1) 
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where /~ = 1 / k T  and ~(r)  is spherically symmetr ic  and pairwise additive 
potential.  ~(r)  is also assumed to be bounded  below, i.e., 4~(r) >/ - b ,  b ~> 0, 
and to decrease faster  than  r -a as r --~ m,  so that  the integral on the right side 
of  (1) exists. By integrating by parts,  one has that  

1 

r(fl) = 3B(/3)/27r~ = - |  e-B| de(r )  (2) 
J o 

Let q;(r) = r  + b. We have that  q;(r) >/ 0 and 

§ b) = [exp(-~b)]~-(fi) = - { e x p [ - ~ ( r ) ] } r  a d~(r)  (3) 

In Ref. 2, r(/~) was reduced to the Laplace t ransform of  a possibly un- 
bounded  and discont inuous function. In  the present  note we extend the work 
of  Ref. 2 in tha t  we show that  ~(~, b) can be writ ten as the Laplace-Stiel t jes 
integral with a measure  /~(s) o f  bounded  var ia t ion on R +. Some of  the 
propert ies  of  the Laplace-Stiel t jes  integrals enable one to determine/x(s)  at 
its points of  continuity f rom the knowledge of  ~(~, b) at a carefully chosen 
discrete set of  points on the positive/3 line. This set turns out  to be included 
in an a rb i t ra r i ly  small ne ighborhood  of  zero temperature .  Fur ther  we show 
that  ~(s)  determines r  uniquely with milder restrictions on the potential  
than  those imposed  in Refs. 1 and 2. 

2. R E D U C T I O N  OF § b) TO  A L A P L A C E - S T I E L T J E S  
I N T E G R A L  

Theorem 1. Let q~(r) be cont inuous and 4 ( + 0 )  > ~(r)  >/ - b  for  each r in 
R +. Also let ~(r)  have a finite number  of  points of  increase (decrease) in any 
finite right ne ighborhood  of  zero. Then  ~(/~, b) is given by 

~(~, b) = - e -as dFl(s )  + e -zs  dF2(s) (4) 

where h = / 3  - a, a > 0, and  /xl(s) and /x2(s) are bounded,  nondecreasing 
functions of  s on their respective domains.  

Proof .  At first we assume tha t  q;(r) is made  of  a finite n u m b e r  of  semi- 
mono ton ic  pieces. Let  0 = r0 < rl < --- r2,+2 = o% where ~(r)  is decreasing 
on (r2j, r2j + 1) and nondecreasing on (re s + 1, r2i + 2), J = 0, 1, 2 ..... n. F r o m  (3), 
~(~, b) is given by 

~(/3, b) = - {exp[-/~4;(r)]}r a d~(r) 
]=0 \ ~ r 2 t  

+ ~  ~, +1 {exp [ - /3~(r)]}r a 

-- ~ s2t+2 ] 

] = 0  LoSg j+  1 ~ 8 2 j + 1  
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where sk = ~(r~), F~(s) = [~-~(s)] ~, k = 1 to 2n + 2; ~ j ( r )  = q~(r), 
r a (r~,  r~+~) and j = 0 to n; ~ + a ( r )  = ~(r) for  r a / ~ + ~  _c (r~j+~, r~+z) 
where q~(r) is increasing on I~+~ a n d j  = 0 to n - 1. The change in variable 
can be justified; e.g., by Theorem II.a. of  Ref. 4. 

Let {se~} be the subsequence of  {s~} defined by 

0 < (o < r < ... < Cm = b = ~m+~ < "" < ~ + ~  = r  

where m is the number  of  turning po/nts of  r in [0, b). fffi, b) can now be 
written as 

~(~, b) = e-~r  ds + e-Z~r ds (5) 
/ r  ~k k = m + l  ~k 

where 

and 

r  = ~ [F~,(s) - F~,+~(s)J (6a) 
i + 1  

I=i ~=I 

F~ k 

= F2kl(s) + ~ ,  [F2k~+l(s) -- F2~§ (6b) 
i = l  

where nk is the number  of  increasing pieces of  ~(r)  in (fk, {:~+1). Since 
F2k~(s) < F2k,+l(s) and F2k,+~(s) > F2~+l(s) for  each (k, i), f rom (6a) and 
(6b), it follows that  r ~< 0 and Ck2(s) i> 0 for  each k. 

? Now, for an s in (~k, {:k+l) - (0, b), let/x~k(s) = - e~ e-~tCkl(t) dt and 

for an s in (~:~, ~k+l) c (b, oe), let t~a~(s) = f~ e-~tCk2(t) dt for  some c~ > 0. 

It  follows that  ~l~(s) a n d / ~ k ( s )  are nondecreasing functions of  s on their 
respective domains. They  are also bounded since each term on the right side 
of  (5) exists for each fi > 0. F rom (5) one has that  

:r(fl, b) = - ~ e -'~ dl~lqs) + e - ~  d.~k(s) (7) 

where A =/~  - ~. Define fur ther  

Z - 1  

k = O  

and 

,~ ( s )  -- ~ [t~(~:~+~) - t~(~'~)]  + t~4(s), s ~ (~:,, ~',+~) ~ (b, oo) 
k =2n;~- 1 
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Since {fz} is included in a set of  measure zero, [ix~(fz + 0) - ix~(~:k)] = 0 
for i = 1 or 2, and each k. Hence ixl(s) and ix2(s) are nondecreasing, bounded 
functions of  s defined everywhere on [0, b) and [b, oo), respectively. At the 
end points 0 and b they are defined by right continuity. Also/x~(0) = ~2(b) = 0. 
It  is now obvious that  the right side of  (7) can be summed to yield the right 
side of  (4). 

Finally, the restriction of  n being finite can be removed by observing that  
d~(r) changes its sign only a finite number  of  times for r in [0, R], R < oo. 
Let  

f0 Rt ~(/~, b) = - {exp[-/3q~(r)l}r a d~(r), i =  1,2,..., R1 < R~ < ... 

where Ri are chosen such that  the choice of  the limits of  summation in (5) is 
legitimate. For  sufficiently large R1, one has that  ]~(p, b) - ~(/~, b)[ < e/2 
for  any e > 0 and each i. Hence [~i(/3, b ) -  ~j(/?, b)[ < ~. Consequently,  
{~(p, b)} is a Cauchy sequence, and each of  ~(p, b) can be written as the right 
side of  (7). QED 

The restriction r  0) > r  is unnecessary for the results which follow. 
I f  r  <~ r  for  some r, the second integral on the right side of  (4) can be 
written as a difference of  two integrals: 

fb= e-aS dl~2(s)-+ fCe-a~ d~2(s) - fc| e-aS d~3(s) 

where ix3(s) is also bounded and nondecreasing on [c, oo) and the following 
results can be seen to be true with slight modifications in the proofs.  

Corollary 1. e(/3, b) = f o  e-aS d#(s), b >>. O, where #(s) is of  bounded 

variation. 

Proof. Define #(s) = -ixl(s) for  s in [0, b) and #(s) = -i~l(b - O) + 
ix2(s) for  s in [b, oo). #(s) is of  bounded variation and the right side of  (4) can 
be summed to yield the desired result. QED 

Since #(s) is decreasing only when s is in [0, b), for  positive potentials one 
has a stronger result: 

Corollary 2. ~(/3, O) = fo ~ e -as dix(s), where ix(s) is bounded and non- 

decreasing. 

Proof. The result follows by setting b = 0 in (4) and ix(s) =/z2(s)  for  
each s. QED 
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3. DETERMINATION OF ~(r) 

Knowledge of ~(A, b) for each A > 0 enables one to determine #(s) 
uniquely at all points of its continuity; i.e., on U2=o (~:~, ~k+l). However, 
much less information is sufficient to determine #(s). 2 Probably the strongest 
and, from the practical point of view, the most useful result can be stated as 
follows: 

Lemma 1. Let q~(r) be as in Theorem 1. Then ~(A~, b), i = 0, 1, 2,..., 
where {A~} is an unbounded, increasing sequence such that A 0 = 0 and 
~g=l (l/A0 = o% determines #(s) uniquely on UY=0 (sc~, ~:~+0. 

Proof From Theorem 1, -~(/3, b) is a Laplace-Stieltjes integral with 
measure #(s) being of bounded variation. Hence, 3 ~(A~, b), i = 0, 1, 2 ..... 
determine #(s) uniquely at all of its points of continuity; i.e., on 
(._)2= o (sek, se~ + 1). QED 

Let ,~ = (1/kT 0 - ~, or T~ = 1/k(~ + ,~), for an arbitrary ~ > 0. {T;} is 
obviously a discrete set in [0, 1/kc~]. Thus the knowledge of the second virial 
coefficient at a discrete set of points, consistent with the hypothesis of Lemma 
1, in an arbitrarily small right neighborhood of T = 0 determines p.(s) 
uniquely. Some of the inversion formulas approximate #(s) by a series of step 
functions and hence d#(s)/ds by a series of delta functions. 4 As we shall see, 
knowledge of d#(s)/ds is necessary in determining 9~(r). Hence, such formulas 
are not suitable for determining ~b(r). However, there are formulas available 
which enable one to approximate #(s) by a continuously differentiable 
sequence. (6) In the following we assume that p(s) = d#(s)/ds has been deter- 
mined by some such inversion formula on ~,/~=0 (~:k, ~:k+l), which also 
determines s~, k = 0, 1, 2 ..... 

Theorem 2. Let qS(r) be as in Theorem 1 and have a unique continuous 
inverse on (cr ~2) ~ R +. Then {~(;~, b)}, as defined in Lemma 1, determines 
~(r) uniquely on ( ~ ,  ~.). 

Proof Under the hypothesis of the theorem, p(s )=  e-~F2~(s) with 
some k on some interval (ill,/32). From Lemma 1, p(s) is uniquely determined, 
since it is continuous, on 031,/32) by {~(A~, b)}. The F2k(s) is given by F2k(s) = 
e~p(s). Let f2~(s) - [f:~(s)] z/~ (real value). ~(r) is given by ~(r) = fy~(s) ,  
s in (fi~, fl:), on (fs fs = ( ~ ,  ~.). QED 

From Theorem 2 follow the following useful corollaries. 

See, e.g., Ref. 4, Chapters VII and VIII, for various inversion formulas involving some 
other information on § b) than § b) itself. 

3 See, e.g., Ref. 4, pp. 100-105; Ref. 5, Vol. II, pp. 513-517. 
It should be mentioned here that iT(s) is differentiable on Uff=0 (~:k, (e+l). 
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Corollary 3. Let q~(r) be as in Theorem 1 and analytic in some neighbor- 
hood o f / _  R +. Also let it have a single-valued, continuous inverse on some 
interval (cq, ~2) c L Then {~(At, b)} determines q~(r) uniquely on I. 

Proof. From Theorem 2, {?(At, b)} determines 4,(r) uniquely on (~1, c~2). 
On I it is obtained by analytic continuation. QED 

The result of Corollary 3 is clearly valid i f / =  (J?=~ I~, It C R § and the 
set OP= ~ I~ is of measure zero and I~, for each i, contains an interval on which 
~(r) has a single-valued, continuous inverse. On a set of measure zero, 4,(r) is 
determined by continuity. The following corollary extends this result to the 
case when Or= ~ It is of nonzero measure. It suffices to consider the case of 
two intervals/1, I2. 

Corollary 4. Let ~(r) be as in Theorem 1 and analytic in some neighbor- 
hoods of /1  and 12, have single-valued, continuous inverses on at least one 
interval in each one of I~, i = 1, 2, and on the complement Ic of/1 w 12 in I. 
Then ~(r) is uniquely determined by {~(At, b)} on I. 

Proof. From Corollary 3 it follows that 4(r) is uniquely determined by 
{~(At, b)} on/1 and 12. From Theorem 2 it is also uniquely determined on Ic. 
And since it is continuous o n / ,  ~(r) is uniquely determined on I. QED 

4. D I S C U S S I O N  

We require knowledge of {~(A~, b)} to determine q~(r) uniquely. However, 
{4(At, b)} can be easily obtained from the second virial coefficient B(Td. 
Further, the inversion formulas involved yield an approximating sequence to 
p(s), rather than p(s) itself. It is clear from the analysis of Section 3 that this 
enables one to construct an approximating sequence tc ~(r). There is a fair 
amount of flexibility that can be exercised in choosing the set {A,}. The results 
of this paper are particularly useful for practical purposes, for experimentally, 
one only measures B(T) at a finite number of temperature points. This 
knowledge can be used to construct an approximate p(r) in a particular class 
directly, or one can compute theoretical values of B(T) using a model potential 
and Compare them with the experimental values. 

We have avoided unnecessary generalizations to include pathological 
potentials. The class to which q~(r) is assumed to belong is sufficiently large to 
include most of the model potentials normally considered in physics and 
chemistry. 
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