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On the Inversion of the
Classical Second Virial
Coefficient
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For a large class of intermolecular potentials, the values of the second virial
coefficient at a discrete set of temperature points in an arbitrarily small
neighborhood of the origin determine the potential uniquely.
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1. INTRODUCTION

The inverse problem in statistical mechanics consists in finding an inter-
molecular interaction consistent with the known macroscopic properties of a
system. A problem of recent interest has been to investigate to what extent the
second virial coefficient B(f) determines the pair potential ¢(r).*+® In Ref. 1
it was shown that if ¢(r) is reasonable and of a definite sign, then B(B) deter-
mines () uniquely. In Ref. 2 the condition of definiteness of ¢(r) was dropped
but it was required to be analytic in a neighborhood of the positive real line
R™.
B(B) is given by

B(B) = —277L°° (e~ — 1)r2 dr (1)
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where B = 1/kT and (r) is spherically symmetric and pairwise additive
potential. ¢(r) is also assumed to be bounded below, i.e., ¢(r) = —~b, b = 0
and to decrease faster than r 2 as r — o0, so that the integral on the right side
of (1) exists. By integrating by parts, one has that

» 0

() = 3B@) 27 = ~| e r0r dgr) @
Let &(r) = ¢(r) + b. We have that &(r) > 0 and

(B, b) = [exp(—Bb)]=(B) = f {exp[—BH(r)1}r® dd(r) €)

In Ref. 2, +(B) was reduced to the Laplace transform of a possibly un-
bounded and discontinuous function. In the present note we extend the work
of Ref. 2 in that we show that #(8, &) can be written as the Laplace-Stieltjes
integral with a measure u(s) of bounded variation on R*. Some of the
properties of the Laplace-Stieltjes integrals enable one to determine u(s) at
its points of continuity from the knowledge of #(8, b) at a carefully chosen
discrete set of points on the positive 8 line. This set turns out to be included
in an arbitrarily. small neighborhood of zero temperature. Further we show
that u(s) determines ¢(s) uniquely with milder restrictions on the potential
than those imposed in Refs. 1 and 2.

2. REDUCTION OF 7(8, 6) TO A LAPLACE-STIELTJES
INTEGRAL
Theorem 1. Let ¢(r) be continuous and ¢(+0) > ¢(r) = —bforeachrin
R*. Also let é(r) have a finite number of points of increase (decrease) in any
finite right neighborhood of zero. Then #(8, b) is given by

7B b) = [ e date) + | " e dug(s) @

where A = 8 — «, « > 0, and p,(s) and uy(s) are bounded, nondecreasing
functions of s on their respective domains.

Proof. At first we assume that (r) is made of a finite number of semi-
monotonic pieces. Let 0 = ry < 7y < « ran o = 00, where $(r) is decreasing
on (ry;, 2;+1) and nondecreasing on (rz; 41, F2;+2),J = 0, 1, 2,..., n. From (3),
#(B, b) is given by

7B, b)

I

-3 [ " fexpl— BRI dir)

[ fexpt-poer d¢<r>)

T2i+1

L 21 Saf+2
> [ f e~B3Fy(s) ds — f e=B5Fy, (s) ds]
=0 Sa5+1 S25+1

ll
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where 5, = ¢(r), Fu(s) = [P, k=1 to 2n+2; &(r) = 4(r),
re("z;wj‘z;u) and j = 0 to n; Gy;,5(r) = &(r) for relyyiy S (o501, Ta542)
where ¢(r) is increasing on I;,. 1 and j = 0 to n — 1. The change in variable
can be justified; e.g., by Theorem Il.a. of Ref. 4.

Let {¢;} be the subsequence of {s,} defined by

0<§0<§1<“'<fm=b=§m+1<'”<fzn+2=¢(o)

where m is the number of turning points of ¢ in {0, &). #(8, b) can now be
written as

m-1 aés1 2n+1 [ TR
Bo=3 [ emawda s 3 [ Temas

k=m+1vé
where
$i1(s) = D [Farls) — Faroea(5)] (62)
i+1
and
ne+1

P%(s)

Il

Z For(s) — Z Fop,+1(5)
i=1 {=1

&

= For,s) + Z [For, , (8) ~ Fapyea(s)] {6b)
i=1
where n, is the number of increasing pieces of ¢(r) in (&, €x.1). Since
For(s) < Fayra(s) and Fyy,, (s) > Fyy,.1(s) for each (k, i), from (6a) and
(6b), it follows that ,}(s) < 0 and 4,%(s) = 0 for each k.
Now, for an s in (&, &.41) S (0, b), let pi(s) = =[] e~ "4, (¢) dr and
foran s in (&, &..1) € (b, o0), let u*(s) = f;k e~ ", 2(¢) dt for some « > 0.

It follows that u,*(s) and wu,*(s) are nondecreasing functions of s on their
respective domains. They are also bounded since each term on the right side
of (5) exists for each f > 0. From (5) one has that

m-~1 S+l 2n+ 1 Srwt
By == [ e+ 5 [ ety O
k=0 v

k=m+1vE

where A = p — «. Define further

-1

pa(s) = Z (1 (€1 1) — 1 *(€D] + pa'(s), s€ (&, &14+1) = (0, b)

k=0
and

{

pg(s) = Z (o™ (€ +1) — (€] + wa'(s), s€ (&, €141) < (6, )

k=2np~1
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Since {£,} is included in a set of measure zero, [u(é, + 0) — p(&)] =0
for i = 1 or 2, and each k. Hence p(s) and py(s) are nondecreasing, bounded
functions of s defined everywhere on [0, ) and [b, o), respectively. At the
end points 0 and b they are defined by right continuity. Also p,(0) = pq(b) = 0.
It is now obvious that the right side of (7) can be summed to yield the right
side of (4).

Finally, the restriction of # being finite can be removed by observing that
dp(r) changes its sign only a finite number of times for r in [0, R], R < oo.
Let

7B, b) = -fo ({exp[—ﬁ(jz(r)]}rs dd(r), i=12,., R <Ry< -

where R; are chosen such that the choice of the limits of summation in (5) is
legitimate. For sufficiently large R;, one has that |#(8, b) — #(B, b)| < ¢/2
for any ¢ > 0 and each i. Hence |7(B, b) — 7B, b)| < &. Consequently,
{#(B, b)} is a Cauchy sequence, and each of 7(B, b) can be written as the right
side of (7). QED

The restriction ¢(+0) > $(r) is unnecessary for the results which follow.
If $(+0) < &(r) for some r, the second integral on the right side of (4) can be
written as a difference of two integrals:

f e dug(s) — f e dug(s) — j e dug(s)
b b ¢

where pg(s) is also bounded and nondecreasing on [¢, 00) and the following
results can be seen to be true with slight modifications in the proofs.

Corollary 1. #(8, b) = f:’ e ™ da(s), b = 0, where a(s) is of bounded
variation.
Proof. Define g(s) = —puy(s) for s in [0, b) and ja(s) = —p (b — 0) +

uo(s) for s in [b, 00). a(s) is of bounded variation and the right side of (4) can
be summed to yield the desired result. QED

Since j(s) is decreasing only when s is in [0, &), for positive potentials one
has a stronger result:

Corollary 2. #(5,0) = f:’ e~ du(s), where u{s) is bounded and non-
decreasing.

Proof. The result follows by setting b = 0 in (4) and u(s) = po(s) for
each s. QED
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3. DETERMINATION OF 4(r)

Knowledge of #(A, b) for each A > 0 enables one to determine a(s)
uniquely at all points of its continuity; i.e., on 2. o (&, & +1)- However,
much less information is sufficient to determine a(s).? Probably the strongest
and, from the practical point of view, the most useful result can be stated as
follows:

Lemma 1. Let &(r) be as in Theorem 1. Then #(A;, b), i=10,1,2,...,
where {A} is an unbounded, increasing sequence such that A, = 0 and
221 (/&) = oo, determines fi(s) uniquely on UL o (£x, Exs1)

Proof. From Theorem 1, #(8, b) is a Laplace-Stieltjes integral with
measure f(s) being of bounded variation. Hence,® 7(A;, 8), i =0, 1, 2,...,
determine (s) uniquely at all of its points of continuity; i.e., on

Ui~o (¢, €c+1)- QED

Let A, = (1/kT}) — o, or T} = 1/k(e + X)), for an arbitrary « > 0. {T3} is
obviously a discrete set in [0, 1/ke]. Thus the knowledge of the second virial
coeflicient at a discrete set of points, consistent with the hypothesis of Lemma
I, in an arbitrarily small right neighborhood of T = 0 determines f(s)
uniquely. Some of the inversion formulas approximate g(s) by a series of step
functions and hence dji(s)/ds by a series of delta functions.* As we shall see,
knowledge of da(s)/ds is necessary in determining ¢(r). Hence, such formulas
are not suitable for determining ¢(r). However, there are formulas available
which enable one to approximate fi(s) by a continuously differentiable
sequence.® In the following we assume that p(s) = di(s)/ds has been deter-
mined by some such inversion formula on {JZ.¢ (&, £x+1), Which also
determines &,k = 0,1, 2,....

Theorem 2. Let #(r) be as in Theorem 1 and have a unique continuous
inverse on (;, as) S R*. Then {#(X;, b)}, as defined in Lemma 1, determines

#(r) uniquely on (a4, o).

Proof. Under the hypothesis of the theorem, p(s) = e~ *Fy,(s) with
some k on some interval (8, B2). From Lemma 1, p(s) is uniquely determined,
since it is continuous, on (B, B2) by {#(A;, b)}. The F,,(s) is given by Fou(s) =
e%p(s). Let fou(s) = [far(s)]¥® (real value). ¢(r) is given by &(r) = f3.(s),
§in (B, Ba), on (F51(B1), f3(B2)) = (oq, @3). QED

From Theorem 2 follow the following useful corollaries.

2 See, e.g., Ref. 4, Chapters VII and VIII, for various inversion formulas involving some
other information on #(A, b) than #(A, b) itself.

3 See, e.g., Ref. 4, pp. 100-105; Ref. 5, Vol. II, pp. 513-517.

¢ It should be mentioned here that ji(s) is differentiable on (Uf-o (éx, €i+1)-
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Corollary 3. Let ¢(r) be as in Theorem 1 and analytic in some neighbor-
hood of I < R*. Also let it have a single-valued, continuous inverse on some
interval («;, o;) < I Then {#(A;, b)} determines ¢(#) uniquely on I.

Proof. From Theorem 2, {#(A;, )} determines ¢(r) uniquely on (o, «p).
On [ it is obtained by analytic continuation. QED

The result of Corollary 3 is clearly valid if 7 = {Jl., [;, , € R*, and the
set (P-4 1, is of measure zero and I3, for each i, contains an interval on which
&(r) has a single-valued, continuous inverse. On a set of measure zero, ¢(r) is
determined by continuity. The following corollary extends this result to the
case when (., I; is of nonzero measure. It suffices to consider the case of
two intervals Iy, I,.

Corollary 4. Let ¢(r) be as in Theorem 1 and analytic in some neighbor-
hoods of I, and I,, have single-valued, continuous inverses on at least one
interval in each one of I;, i = 1, 2, and on the complement I, of I; U I, in L.
Then ¢(r) is uniquely determined by {7(A;, )} on L

Proof. From Corollary 3 it follows that ¢(r) is uniquely determined by
{#(A;, b)} on I} and I,. From Theorem 2 it is also uniquely determined on I,.
And since it is continuous on I, ¢(r) is uniquely determined on /. QED

4. DISCUSSION

We require knowledge of {#(};, b)} to determine ¢(r) uniquely. However,
{#(A;, b)} can be easily obtained from the second virial coefficient B(T;).
Further, the inversion formulas involved yield an approximating sequence to
p(s), rather than p(s) itself. It is clear from the analysis of Section 3 that this
enables one to construct an approximating sequence tc ¢(r). There is a fair
amount of flexibility that can be exercised in choosing the set {A;}. The results
of this paper are particularly useful for practical purposes, for experimentally.
one only measures B(T) at a finite number of temperature points. This
knowledge can be used to construct an approximate p(r) in a particular class
directly, or one can compute theoretical values of B(7") using a model potential
and compare them with the experimental values.

We have avoided unnecessary generalizations to include pathological
potentials. The class to which ¢(#) is assumed to belong is sufficiently large to
include most of the model potentials normally considered in physics and
chemistry.
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